
Trapping windows messages in the Microsoft®
.NET Framework

Introduction
To perform some tasks, we still need to trap unmanaged windows messages, even though we
are developing managed code. This is a little tutorial that tries to clarify how to trap those
messages using the .NET Framework.

The code is written in C#. Even though I believe it will be quite easy for those who are reading
this document, but use VB.NET™ instead of C#, to port the concepts.

Learn by example
Now, to clarify the concepts lets use something useful. Maybe some of the readers have the need
to detect if a CD, or for what matters any removable volume mounted on a device which supports
a software ejection method (DVD, Zip, etc…), has been inserted or removed from a device. This
can be accomplished by detecting the WM_CHANGEDEVICE message.

Trapping messages in .NET
There are, to my knowledge, two ways of trapping windows messages in the Microsoft® .NET
Framework.:

The IMessageFilter interface
The most obvious, and I suspect the least useful, is to use the IMessageFilter interface.

The CLR defines an IMessageFilter interface, which describes a single method named
PreFilterMessage, which can be used to trap Windows messages. After defining a class which
implements the IMessageFilter interface, we just need to tell the Application class, that it should
add it to the queue of IMessageFilter interfaces it can handle using the
Application.AddMessageFilter method. We can also remove a filter using the
Application.RemoveMessageFilter method from the queue. Now, this approach is only useful to
trap dispatched messages, it does not handle all messages. This process is out of scope in this
document, anyway, as an example example, we would have to use something like:
using System;
using System.Windows.Forms;

public class MyFilter: IMessageFilter
{
 public bool PreFilterMessage(ref Message aMessage)
 {
 if (aMessage.Msg==WM_AMESSAGE)
 {
 //WM_AMESSAGE Dispatched
 //Let’s do something here
 //...
 }
 // This can be either true of false
 // false enables the message to propagate to all other
 // listeners
 return false;
 }

}

At some other point of your code you would have to register an instance of MyFilter, like:
// This will have to have a scope that makes it accessible to both
// AddFilter and RemoveFilter
MyFilter fFilter = new MyFilter();
(…)
Application.AddMessageFilter(fFilter);
(…)
Application.RemoveMessageFilter(fFilter);

Overriding a WndProc method
The solution, in our example, is overriding a WndProc method of a Control or to do the same with
an implementation of the NativeWindow class. The first solution is useful if we need to trap
messages in a class that inherits the Control class. If we want to build a class that is not
dependent on a specific Control, we will have to use the NativeWindow class. This class simply
wraps a window handle, and so, it enables us to override the WndProc method which is
implemented.

In both cases, we will override the WndProc method like:
protected override void WndProc(ref Message aMessage)
{
 if (aMessage.Msg==WM_AMESSAGE)
 {
 //WM_AMESSAGE Dispatched
 //Let’s do something here
 //...
 }
}

Detecting a volume insertion or removal
Now, let’s look at our example. We already know that we will need to trap the
WM_DEVICECHANGED message, and to filter two specific events. We will build the example
based on two classes.

The first one, _DeviceVolumeMonitor, will be private to the project, and will only serve to inherit
the NativeWindow class, so that our main class won’t expose the public NativeWindow methods.
This class will also serve the purpose of encapsulating all API constants and structures that we
will need to make things work.

DeviceVolumeMonitor, will be our main class. It implements most of the logic needed to the user.
Nevertheless, the main subject of this tutorial is in the other class.

The WM_CHANGEDEVICE message
This message is broadcasted whenever something relevant occurs in a device connected to
Microsoft® Windows®. For this matter, there are two events which we will need to trap, the
DBT_DEVICEARRIVAL and the DBT_DEVICEREMOVECOMPLETE.

Both events are handled the same way, the only difference being that DBT_DEVICEARRIVAL
detects a volume being inserted, and the DBT_DEVICEREMOVECOMPLETE detects that a
volume was removed. Now, we need to look at some of the Win32 API declarations to see how
this works.

The WM_CHANGEDEVICE constant definition can be found in WinUser.h, all other information
we will need, it can be found in DBT.h header file. Both files are part of the Microsoft® Platform
SDK.

When a WM_CHANGEDEVICE is broadcasted, the message structure will transport the event
value in the WParam, and some additional data in a location pointed by LParam.

As I already described, we are only interested in trapping messages that have a WParam with the
DBT_DEVICEARRIVAL or DBT_DEVICEREMOVALCOMPLETE values. The data pointed by
LParam will have the same structure in both cases.

Once one of the events is detected, we must cast the pointer stored in LParam, to a
_DEV_BROADCAST_HDR structure, and evaluate the dbch_devicetype field. We are only
interested in proceeding if the field value is DBT_DEVTYP_VOLUME.

If this is the case, then we will need to cast LParam again, but this time to point at a
_DEV_BROADCAST_VOLUME structure. This structure has two fields which we will have to
evaluate. The first one is dbcv_flags. This field will tell us the nature of the volume that was
mounted (or dismounted). It can be either a media volume like a CD (the flag will have a
DBTF_MEDIA flag) or a network share (DBTF_NET). In this case we will only be interested in
filtering the DBTF_MEDIA value. The other field is dbcv_unitmask, which is a bit vector that tells
us which drive letters were mounted.

At this point, there are two facts which need to be clarified. As stated in the Platform SDK
documentation, this message can tell us if more than one volume was mounted and these can be
of multiple types. We will have to make an assumption that is whenever the dbcv_flags includes
the DBTF_MEDIA value, we will assume that all the drives described by the dbcv_unitmask bit
vector are of this type. I don’t think that it is likely that this notification will ever have a dbcv_flags
that includes both types. Anyway, this would be solved if we would determine the specific type for
all the drives described by dbcv_unitmask. On the other hand, as it was already implied,
dbcv_unitmask can describe more than one drive at a time. I guess this is only likely if we have a
jukebox device, but anyway this is a problem we will solve in the code.

The _DeviceVolumeMonitor class
This is a helper class which is internal to the project. Now as I told you before, this class is only
useful to inherit the NativeWindow class and to encapsulate the API constants and structures we
will use. The class constructor takes only a parameter which will be the instance of the main class
that owns the _DeviceVolumeMonitor instance.

The API constants and structures were modified to become more readable and useful in the .NET
context.

The WndProc is overridden according to the cascading conditions described for the
WM_DEVICECHANGE message. If all conditions are fulfilled then the object uses as internal
method of the main class to inform it that a valid event has occurred. This method is called
TriggerEvents.

The DeviceVolumeMonitor
Our main class, contains some logic, which has no relation to windows messages itself.

Now, we know that this class creates an instance of the former class, and that whenever an event
is detected, it is reported back to the main class through the TriggerEvents method. This is not a
clean OOP approach, but there was no point in making things more complicated.

This class has two properties defined: Enabled and AsynchronousEvents. The Enabled property
is self explanatory, is handles enabling or disabling the message trapping. This is done with the
helper class. When we want messages to be trapped we assign the handle to the NativeWindow
descendant, and the WndProc method will be invoked whenever there is a message either
broadcasted or dispatched, the handle will be released when the property is unset. This approach
is better than controlling the property value in the WndProc method (the property is still evaluated
on the method as a sanity check anyway), because the class won’t overload the system with
unnecessary checks.

AsynchronousEvents controls the way events are invoked. If it is set, then the event will be called
asynchronously, and WndProc won’t stall waiting for the application to process whatever it has to.
Now, the way this is done on the TriggerEvents method is not peaceful. Many of you will criticize
the BeginInvoke without following the design pattern. It is an unsafe option, but still it works if it
only evolves calling thread safe code. Either way, I assume that you know what you are doing if
you set this property.

There is a platform invoke to an API function called QueryDosDevice. This is a function that
enables the translation between the drive letter, or DOS device name, to the full device path. This
is used by one of two methods which translate the bit vector that was mentioned before.
MaskToLogicalPaths translates the bit vector to a comma delimited string with all the drive letters
described by the bit vector, MaskToDevicePaths on the other hand returns a string which is a list
of the full device paths.

Two events are defined, OnVolumeInserted and OnVolumeRemoved. Both of them take the
issued bit vector as a parameter.

Finally, I have implemented the IDisposable interface, I followed the design pattern, so there is
not much to say here.

Rui Reis

April 2003

